Gravitational wave signal from Massive gravity [arXiv:1208.5975]

Norihiro Tanahashi (UC Davis)

with

- A. E. Gümrükçüoğlu, C. Lin, S. Mukohyama (Kavli-IPMU)
- S. Kuroyanagi (RESCEU, U Tokyo)

Introduction

- Probe massive gravity theories by gravitational wave observations
- We assume EoM of GW is modified by time-dependent graviton mass:

$$\ddot{\gamma}_k + 3H\dot{\gamma}_k + \left(\frac{k^2}{a(t)^2} + M_{GW}^2(t)\right)\gamma_k = 0$$

 \rightarrow Argue how to detect $M_{GW}(t)$ from observational signals

Introduction

- Massive gravity as IR modified gravity
 - Self-accelerating universe without dark energy
 - Various modifications to gravitation
- Stochastic gravitational wave background
 - Gravitational wave generated in inflationary era
 - Target for upcoming GW observations
 - A probe for massive gravity theories

Contents

1. Introduction

- 2. Massive gravity theories
- 3. Evolution of gravitational wave
- 4. Observed spectrum
- 5. Summary

Massive gravity theories

Fierz-Pauli massive gravity (1939)

$$S = \frac{M_{Pl}^2}{2} \int d^4x \left[R - \frac{1}{4} m^2 \left(h_{\mu\nu} h^{\mu\nu} - h^2 \right) \right]$$

$$\left[h_{\mu\nu} = g_{\mu\nu} - \eta_{\mu\nu} \right]$$

- Works well at linear order
- Suffers from Ghost instability at non-linear order
 - → Many improved theories have been proposed

Massive gravity theories

- Massless gravity (GR): 2 tensor modes
- Massive gravity: 1 scalar + 2 vector + 2 tensor modes
 - Modifications by scalar modes
 - → Probed by solar system tests etc.
 - Modifications to tensor modes
 - → Affects gravitational wave propagation
- → Gravitational wave observations will be relevant if
 - ✓ Scalar and vector modes behaves exactly same as GR
 - ✓ Tensor modes are modified by the graviton mass

Massive gravity theories

- Examples:
- Non-linear extension of Fierz-Pauli massive gravity (de Rham, Gabadadze & Tolley 2011)

$$S = M_{Pl}^{2} \int d^{4}x \sqrt{-g} \left[\frac{R}{2} + m_{g}^{2} \left(\mathcal{L}_{2} + \alpha_{3} \mathcal{L}_{3} + \alpha_{4} \mathcal{L}_{4} \right) \right]$$

$$\mathcal{L}_{2} = \frac{1}{2} \left([\mathcal{K}]^{2} - [\mathcal{K}^{2}] \right), \quad \mathcal{L}_{3} = \frac{1}{6} \left([\mathcal{K}]^{3} - 3[\mathcal{K}][\mathcal{K}^{2}] + 2[\mathcal{K}^{3}] \right),$$

$$\mathcal{L}_{4} = \frac{1}{24} \left([\mathcal{K}]^{4} - 6[\mathcal{K}]^{2}[\mathcal{K}^{2}] + 3[\mathcal{K}^{2}]^{2} + 8[\mathcal{K}][\mathcal{K}^{3}] - 6[\mathcal{K}^{4}] \right),$$

$$\mathcal{K}^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} - \left(\sqrt{g^{-1}\hat{f}}\right)^{\mu}_{\ \nu}, \quad [\mathcal{K}] = \text{tr}\mathcal{K}, \quad \hat{f}_{\mu\nu} = f_{ab}\partial_{\mu}\phi^{a}\partial_{\nu}\phi^{b}$$

Massive gravity theories

- Examples:
- Non-linear extension of Fierz-Pauli massive gravity (de Rham, Gabadadze & Tolley 2011)

$$S = M_{Pl}^2 \int d^4x \sqrt{-g} \left[\frac{R}{2} + m_g^2 \left(\mathcal{L}_2 + \alpha_3 \mathcal{L}_3 + \alpha_4 \mathcal{L}_4 \right) \right]$$

- No BD ghost even at non-linear level (Hassan & Rosen 2011)
 - Effective Λ appears from mass terms
 - → Self-accelerating FRW universe
 - Cosmological perturbations

Massive gravity theories

- Examples:
- Non-linear extension of Fierz-Pauli massive gravity (de Rham, Gabadadze & Tolley 2011)
 - Cosmological perturbations (Gümrükçüoğlu, Lin & Mukohyama 2011)
 - Scalar & vector perturbations:
 May behave exactly same as GR
 - Tensor perturbations:

EoM in GR + Time-dependent mass term

$$\ddot{\gamma}_k + 3H\dot{\gamma}_k + \left(\frac{k^2}{a(t)^2} + M_{GW}^2(t)\right)\gamma_k = 0$$

Massive gravity theories

- Examples:
- Lorentz-violating massive gravity theories

(Dubovsky 2004 etc)

$$S = \int dx^4 \sqrt{-g} \left[L_{GR} + L_{mass} \right]$$

$$L_{mass} \simeq \frac{1}{4} \left\{ m_0^2 h_{tt}^2 + 2m_1^2 h_{ti}^2 - m_2^2 h_{ij}^2 + m_3^2 h_{ii}^2 - 2m_4^2 h_{tt} h_{ii} \right\}$$
with $m_1 = 0$, $m_0^2 = -3\gamma m_4^2$, $\gamma \left(m_2^2 - 3m_3^2 \right) = m_4^2 - \frac{1}{2} m_1^2$

- ➤ Cosmological perturbations
 - Scalar perturbations: Rather Mild modification
 - Vector perturbations: Behaves exactly same as GR
 - Tensor perturbations: EoM in GR + Mass term

Massive gravity theories

• Examples:

```
04 etc)
Caveats:

    Instability of FRW solutions

                           [De Felice+, ... ]

    Superluminarity

                    [Deser & Waldron, ...]

    Other constraints

                            [Burrage+, ... ]
```

Massive gravity theories

- •General model for which GW observation is relevant:
 - ✓ Scalar and vector modes behaves exactly same as GR
 - ✓ Tensor modes obey a ghost-free general action

$$I = \frac{M_{Pl}^2}{8} \int dt dx^3 N a^3 \sqrt{\Omega} \left[\frac{1}{N^2} \dot{\gamma}^{ij} \dot{\gamma}_{ij} + \gamma^{ij} \left(\sum_{n=0}^{\infty} c_n(t) \frac{\Delta^n}{a^{2n}} \right) \gamma_{ij} \right]$$

$$\simeq \frac{M_{Pl}^2}{8} \int dt dx^3 N a^3 \sqrt{\Omega} \left[\frac{1}{N^2} \dot{\gamma}^{ij} \dot{\gamma}_{ij} + \frac{c_g^2(t)}{a^2} \gamma^{ij} \left(\triangle - 2K \right) \gamma_{ij} - M_{GW}^2(t) \gamma^{ij} \gamma_{ij} \right]$$

✓ Probe $M_{\text{GW}}(t)$ by observations of stochastic gravitational wave

Seminar @ Berkeley Lab

Jan 11, 2013

Evolution of gravitational wave

• Pure GR

$$\ddot{\gamma}_k + \underbrace{3H^2\dot{\gamma}_k} + \left(\underbrace{\frac{k^2}{a(t)^2}} + M_{GW}^2(t)\right)\gamma_k = 0$$

Evolution of gravitational wave

• Pure GR

$$\ddot{\gamma}_k + \underbrace{3H^2\dot{\gamma}_k} + \left(\underbrace{\frac{k^2}{a(t)^2}} + M_{GW}^2(t)\right)\gamma_k = 0$$

Seminar @ Berkelev Lab

Jan 11, 2013

Evolution of gravitational wave

Pure GR

$$\ddot{\gamma}_k + \underbrace{3H^2\dot{\gamma}_k} + \left(\underbrace{\frac{k^2}{a(t)^2}} + M_{GW}^2(t)\right)\gamma_k = 0$$

WKB solution

$$\gamma_k = A(k) \frac{a_k}{a(t)} \exp\left(i \int \frac{k}{a} dt\right)$$

$$A(k) \equiv \frac{H_*}{M_{Pl}k^{3/2}}$$
: Primordial amplitude

Evolution of gravitational wave

• Pure GR + Graviton mass term

$$\ddot{\gamma}_k + \underbrace{3H^2\dot{\gamma}_k} + \underbrace{\left(\frac{k^2}{a(t)^2}\right)} + \underbrace{M_{GW}^2(t)}) \gamma_k = 0$$

Evolution of gravitational wave

• Early time:

$$\ddot{\gamma}_k + \underbrace{3H^2\dot{\gamma}_k} + \underbrace{\left(\frac{k^2}{a(t)^2} + \underbrace{M_{GW}^2(t)}\right)}_{\gamma_k} \gamma_k = 0$$

 $\rightarrow \gamma_k \approx \text{constant}$

Evolution of gravitational wave

• Late time:

$$\ddot{\gamma}_k + 3H^2\dot{\gamma}_k) + \left(\frac{k^2}{a(t)^2} + M_{GW}^2(t)\right)\gamma_k = 0$$

 $\rightarrow \gamma_k$ oscillates with $\omega(t) = \sqrt{\frac{k^2}{a^2} + M_{GW}^2(t)}$

Evolution of gravitational wave

- Pure GR + Mass term:
 - Large k : Same as pure GR
 - Medium k: Suppression of γ near today
 - Small k: Dominated by $M_{GW}(t)$

Evolution of gravitational wave

- Pure GR + Mass term:
 - Large k : Same as pure GR
 - Medium k: Suppression of γ near today
 - Small k: Dominated by $M_{GW}(t)$

Evolution of gravitational wave

• Pure GR + Mass term:

$$\ddot{\gamma}_k + 3H\dot{\gamma}_k + \left(\frac{k^2}{a(t)^2} + M_{GW}^2(t)\right)\gamma_k = 0$$

$$\equiv \omega^2(t)$$

WKB solution

$$\gamma_k = A(k) \sqrt{\frac{a_k^3 \omega_k}{a(t)^3 \omega(t)}} \exp\left(i \int \omega(t) dt\right)$$

$$\left(\text{GR: } \gamma_k = A(k) \frac{a_k}{a(t)} \exp\left(i \int \frac{k}{a} dt\right)\right)$$

Evolution of gravitational wave

- Pure GR + Mass term:
 - Large k : Same as pure GR
 - Medium k: Suppression of γ near today
 - Small k: Dominated by $M_{GW}(t)$

Evolution of gravitational wave

- Pure GR + Mass term:
 - Large k : Same as pure GR
 - Medium k: Suppression of γ near today
 - □ Small k: Dominated by $M_{GW}(t)$

 $\equiv \omega^2(t)$

Jan 11, 2013

Evolution of gravitational wave

• Pure GR + Mass term:

$$\ddot{\gamma}_k + 3H\dot{\gamma}_k + \left(\frac{k^2}{a(t)^2} + M_{GW}^2(t)\right)\gamma_k = 0$$

WKB solution

$$\gamma_k = A(k) \sqrt{\frac{a_k^3 \omega_k}{a(t)^3 \omega(t)}} \exp\left(i \int \omega(t) dt\right)$$

$$|\gamma_k(t_0)| = A(k) \sqrt{\frac{a_c^3 M_{GW}(t_c)}{a_0^3 M_{GW}(t_0)}}$$

$$A(k) \equiv \frac{H_*}{M_{Pl}k^{3/2}}$$
: Primordial amplitude

We've discussed power spectrum w.r.t. k:

$$\mathcal{P}(k) \equiv \left. \frac{d}{d \ln k} \langle \gamma_{ij} \gamma^{ij} \rangle \right|_{t=t_0} = \frac{2k^3}{\pi^2} \left| \gamma_k(t_0) \right|^2$$

Observatories measures power spectrum w.r.t. \(\O\):

$$\mathcal{P}(\omega_0) \equiv \frac{d}{d \ln \omega_0} \langle \gamma_{ij} \gamma^{ij} \rangle \bigg|_{t=t_0} = \underbrace{\frac{d \ln k}{d \ln \omega_0}} \mathcal{P}(k(\omega))$$

$$\left(\omega_0^2 = \frac{k^2}{a_0^2} + M_{GW}^2(t_0)\right) \qquad \frac{\omega_0^2}{\omega_0^2 - M_{GW}^2(t_0)}$$

• ($\mathcal{P}(\omega)$ in MG) / ($\mathcal{P}(\omega)$ in GR) for the same ω

• ($\mathcal{P}(\omega)$ in MG) / ($\mathcal{P}(\omega)$ in GR) for the same ω

• Peak in $\mathcal{P}(\omega)$ is sensitive to $\mathcal{P}_{\text{prim}}(k)$:

$$\mathcal{P}(\omega_0) = \underbrace{\frac{d \ln k}{d \ln \omega_0}} \mathcal{P}(k(\omega_0)) \propto k^{-2} \mathcal{P}_{\text{prim}}(k) \big|_{k=k(\omega_0)}$$

$$\omega_0^2 = \frac{k^2}{a_0^2} + M_{GW}^2(t_0) \Rightarrow \frac{d \ln k}{d \ln \omega_0} = \left(\frac{a_0 \omega_0}{k}\right)^2$$

 $ightharpoonup ext{If } \mathcal{P}_{\text{prim}}(k) ext{ is flat for } k \to 0, \mathcal{P}(\omega) ext{ diverges at } \omega = M_{\text{GW}}(t_0)$

Observed spectrum

• Peak in $\mathcal{P}(\omega)$ is sensitive to $\mathcal{P}_{\text{prim}}(k)$:

$$\mathcal{P}(\omega_0) = \underbrace{\frac{d \ln k}{d \ln \omega_0}} \mathcal{P}(k(\omega_0)) \propto k^{-2} \mathcal{P}_{\text{prim}}(k) \Big|_{k=k(\omega_0)}$$

$$\omega_0^2 = \frac{k^2}{a_0^2} + M_{GW}^2(t_0) \Rightarrow \frac{d \ln k}{d \ln \omega_0} = \left(\frac{a_0 \omega_0}{k}\right)^2$$

 $ightharpoonup \operatorname{If} \mathcal{P}_{\operatorname{prim}}(k) \text{ has a cutoff near } k = 0,$

Peak height
$$\sim \lim_{k \to k_{\text{cutoff}}} k^{-2} \mathcal{P}_{\text{prim}}(k) < +\infty$$

(ex.) •
$$N_{\text{e-fold}} \approx 65 \rightarrow k_{\text{cutoff}} = 1 \text{ H}_0$$

• $M_{\text{GW}}(t_0) = 10^{-8} \text{ Hz} \approx 10^9 H_0$
 $\rightarrow (\mathcal{P}(\omega) \text{ in MG}) / (\mathcal{P}(\omega) \text{ in GR}) \sim 10^{23} \text{ at the peak}$

• Peak in $\mathcal{P}(\omega)$ is sensitive to $\mathcal{P}_{\text{prim}}(k)$:

$$\mathcal{P}(\omega_0) = \underbrace{\frac{d \ln k}{d \ln \omega_0}} \mathcal{P}(k(\omega_0)) \propto k^{-2} \mathcal{P}_{\text{prim}}(k) \Big|_{k=k(\omega_0)}$$

$$\omega_0^2 = \frac{k^2}{a_0^2} + M_{GW}^2(t_0) \Rightarrow \frac{d \ln k}{d \ln \omega_0} = \left(\frac{a_0 \omega_0}{k}\right)^2$$

- $\begin{cases} \bullet \text{ Peak height} & \Rightarrow \lim_{k \to +0} k^{-2} \mathcal{P}_{\text{prim}}(k) \\ & \Rightarrow \text{ small } k \text{ cutoff of } \mathcal{P}_{\text{prim}}(k) \\ \bullet \text{ Peak location} & \Rightarrow M_{GW}(t_0) \\ \bullet \text{ Peak shape} & \Rightarrow M_{GW}(t_{\text{crit}}) \end{cases}$

Observed spectrum

Sensitivity range:

□ LISA: 10⁻⁴~1 Hz

□ DECIGO: 10⁻¹~1 Hz

□ SKA, PPTA: 10⁻⁸ ~ Hz

Current bound:

□ $M_{\rm GW}(t_0)$ < 10⁻⁵ Hz from binary pulsar timing [Finn & Sutton 2002]

→ GW signal will be observable if

$$10^{-8} \text{ Hz} < M_{\text{GW}}(t_0) < 10^{-5} \text{ Hz}$$

Amplification from GR:

$$\frac{\mathcal{P}^{\mathrm{MG}}(\omega_0)}{\mathcal{P}^{\mathrm{GR}}(\omega_0)} \sim \frac{a_c^2 k_c}{a_{k_0}^{GR^2} k_0} \left(\frac{\omega_{\mathrm{cutoff}}^2}{M_{GW,0}^2} - 1 \right)^{-1}$$

•
$$M_{\text{GW}}(t_0) = 10^{-8} \text{ Hz} \approx 10^9 \text{ H}_0$$

•
$$k_{\text{cutoff}} = 1 \text{ H}_0$$

$$\sim 10^{23}$$

•
$$M_{\text{GW}}(t_0) = 10^{-4} \text{ Hz} \approx 10^{13} \text{ H}_0$$

•
$$k_{\text{cutoff}} = 1 \text{ H}_0$$

$$\sim 10^{35}$$

Seminar @ Berkeley Lab

Jan 11, 2013

Observed spectrum

Summary

- Probe time-dependent mass of general massive gravity theories by gravitational wave observations
- GW direct observations:

 Peak height

 Peak height

 Peak height

 Peak height

 Peak height

 Peak height

 Peak location

 Peak location

 Peak shape

 Peak shape

 Peak shape
- Other probes for $M_{GW}(t)$?
 - □ GW → CMB polarizations
 - Suppression at lower multipoles: [Dubovsky et al. 2009]

$$\ell < 10^{-3} \times M_{GW}(t_{\rm rec})/H_0$$

- $\rightarrow M_{\rm GW}(t)$ at recombination
- □ $\Omega_{\rm GW}h^2 \propto \omega^2 \mathcal{P}(\omega) \sim M_{\rm GW}(t)^2 \mathcal{P}(\omega) \rightarrow BBN constraint?$